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The Hawking effect of a nonuniformly rectilinearly accelerating Kinnersley black 
hole is studied. Its horizons are rotationally symmetric. Its Hawking temperature 
depends not only on the time, but also on the polar angle. When a Kinnersley 
black hole touches its Rindler horizon, the Hawking temperature at the contact 
point is reduced to zero. But at the opposite pole of the black hole, the Hawking 
temperature increases rapidly. A jet appears as a tail of the accelerating black hole. 

1. I N T R O D U C T I O N  

Recently, we suggested a new method to determine the location and the 
temperature of  event horizons of  nonstationary black holes (Zhao and Dai, 
1992; Zhu et  al. ,  1995; Zhao and Li, 1993; Zhao et  al.,  1994). By means of 
the new method, we have given those for some spherically symmetric non- 
static black holes. The results are consistent with those obtained by calculating 
the vacuum expectation values of  the renormalized energy-momentum tensors 
(Hiscock, 1986; Balbinot, 1986). Furthermore, the new method is more exact 
and more convenient than the old one. 

Now we want to deal with the Hawking effect of  an axially symmetric 
nonstationary black hole--nonuniformly rectilinearly accelerating Kinnersley 
(1969) black hole. It is impossible to get the Hawking temperature of  non- 
spherically symmetric, nonstationary black holes using the calculation of the 
energy-momentum tensors, but it is possible and easy by means of the new 
method, In addition, we want to know what happens when the black hole 
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horizon touches the Rindler horizon in the Kinnersley space-time (Unruh, 
1976). 

In Section 2 we study the Hawking effect in Kinnersley space-time, and 
show that the horizons are rotationally symmetric and that the Hawking 
temperature depends not only on the time, but also on the polar angles. In 
Section 3 we study the Hawking-Unruh effect of the Rindler horizon when 
the mass of the Kinnersley black hole vanishes. Section 4 contains the very 
interesting result that a jet will appear as a tail of  the accelerating black hole 
when the black hole touches its Rindler horizon. In Section 5 we give 
conclusion and discussion. 

2. HAWKING EFFECT IN KINNERSLEY SPACE-TIME 

The line element of the nonuniformly rectilinearly accelerating Kinner- 
sley black hole space-time is (Kinnersley, 1969) 

ds 2 = (1 - 2ar cos 0 - r2f 2 - 2mr -1) dv 2 - 2 dv dr - 2r2f dv dO 

- r 2 dO E - r E sinE0 dqb 2 (1) 

where f - -  -a(v)  sin 0. 
Both acceleration a and mass in depend on the advanced Eddington 

time v. The north pole 0 = 0 points toward the direction of acceleration. By 
means of the null-surface condition 

~J OF ~f OF~ 

we have the event horizon equation (Zhao et al., 1993) 

G) 2 ~ -  l - 2 a r ,  c o s o - 2 m  _ 2 f r h _  r-~n = 0  (3) 

r~t is the location of the event horizon, ~. = (Or/Ov)., and r~ = (0r/00)m 
The Klein-Gordon equation can be given as 

- 2 0 v  Or r Ov Or 2 

Orb Oz~ + 2f Orb O~ 
r 21 ( 2 r + 6 a r  2 c o s O - 2 m ) ~ + 2 f O r O 0  r O0 2acosO--Or 

1 02(I ) ctg 0 3~  1 320 
r E 002 r E O0 rE sinE 0 0(~2 ~IL2(I ) = 0 (4) 
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With the generalized tortoise coordinate transformation (Zhao and Li, 1992; 
Zhu et al., 1995; Zhao and Li, 1993; Zhao et aL, 1994) 

1 
r ,  = r + ~ ln[r - rH(v, 0)], v ,  = v - Vo, 0 .  = 0 - 0o (5) 

equation (4) can be written as 

{2/'~t - (I - 2ar cos 0 - 2mr-t)[2K(r - r~l) + 1] - 2fr'~} 
rZ[2K(r - r tO+ 1] - r ~  

2 K ( r -  r n ) [ 2 K ( r -  rn) + 1Jr 2 

02da OZCb { 
• Or2, -- 2 ~ + Or, Or, rz[2K(r 

[ ,]-' 
+ 1 + 2K(r z r t0 

• 

2rb + 2f} 02~b 
- rt4) + 1] Or, O0, 

~. -_2r 2r 1 - 2ar cos 0 - 2mr-l  
+ 

( 2 K ( r -  002 + 2 K r ( r -  rH) 2K(r - 002 

2(r  - 8ar2cos 0 - m) 
r 2 

1 + 

1 + 2 K ( r -  04) 2K(r - rH) z 

2fr  
2 K ~ r  --  ~ )  

r'ff + r~(r - rtl) + r'~ cos 0 } 0~b 

+ 2KrZ(r - rtt) 2 2Kr2(r - r/0sin 0 Or, 
-1 

1 

Ov----, r - ~ .  + r -5 002. 

1 O2dP } 
+ r2 sin2---- ~ 0d0~ + ix2~ = 0 (6) 

where K is an adjustable parameter in the tortoise transformation. It is the 
surface gravity of  the event horizon when the space-time is stationary. 

When r --~ ru(vo, 0o), v ~ Vo, and 0 ~ 00, the equation can be reduced to 

d2~ O2dP + B- 02cI) G dq) = 0 (7) 
a O.rZ ,, + 2 0 r ,  O0, Or, O 0 ~  Or----, 
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where 

~- Lim 
r--'rn~%,O o) 

V----)V 0 
0---) 0 0 

{2r -- (1 -- 2ar cos 0 -- 2mr-I)[2K(r -- rn) + 1] -- 2fr'n} 

• rZ[2K(r-- rn) + 1] -- rff  • (8) 
- 2 K ( r -  r t 0 [ 2 K ( r -  rH) + 1]r z 

= ( B - 2  + rn]~.o (9) 
0---~0 0 

(2  2m l=o~ G =  - ~ +  1 6 a c o s 0 +  r2  r 3 +  r 2 C t g 0  (10) 

Here.  we  have used equation (3). We select the adjustable parameter  K as 

1 mlrZn-  a cos 0 - r~lr3[  

K = 2~'H m/r'-'-~n + a co'--s I~ + rffl2r--~nlv_%' - I  ( I1 )  
0--+0 0 

Then we have oL = 1. and equat ion (7) can be reduced to 

bZ(ID c]2(I ) b 2 ( I  ) 0 ( I )  

OrZ, + 2 0 r ,  Ov--'---~, + B Or, O0~ G Or, 0 (12) 

Separating variables as 

= R ( r , ) O ( 0 , )  e x p [ - i c o v ,  + in+] (13) 

we can verify that the radial wave  solutions of  equation (12) are. respectively,  

~bin = e x p [ - i t o v , ]  (14) 

+out = e x p [ - i t o v ,  + Gr,  + 2io~r,] (15) 

+i.  is the ingoing wave.  while +out is the outgoing wave.  Near  the event  
horizon rH, +out Can be rewritten as 

+out = e x p [ - i t o v , ] ( r -  rn)C/2K(r- r~) i'~ (16) 

It is not analytical at the horizon. By  analytical continuation rotating - a t  
through the lower-half  complex  r-plane, we can extend +out f rom the outside 
of  the black hole into the inside of  the black hole (Damour.  1976) 

( r -  rH) ~ Ir -- rHle -i~r = (r H -- r)e -i~ 
dl  ~ atlt - -  -ioav +Gr,+2itor .D-iarGI2 . . . .  IK (17) 
,-out - -  ~-out - e * ~ .~ 
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The relative scattering probability of  the outgoing wave at the horizon is 

I l l~ 2 = e -2w'~ (18) 

,'ut 
Then the spectrum of  the Hawking radiation is (Sannan, 1988) 

N., = (e ~ + 1) - l  (19) 

where 

K 1 1 m / r  2 - a cos 0 - r'n2/r 3 
T . . . .  (20) 

27rKB 2wKs 2rn m/r  2 + a cos 0 + r'u2/2r 3 

T is the Hawking temperature and Ks is Boltzmann's constant. 
We see that both the location and the temperature of  the event horizons 

in the nonuniformly rectilinearly accelerating Kinnersley space-time depend 
not only on the time, but also on the polar angle. 

3. R I N D L E R  H O R I Z O N  

When m -- 0 but a(v)  4: 0, we give the Rindler horizon equation of a 
nonuniformly rectilinearly accelerating observer, 

2i)4 - (1 - 2art4 cos O) - 2 f r b  - r--~ = 0 (21) 

where rH is the location of  the Rindler horizon. The Klein-Gordon equation 
can be given as 

O2(I ) 2 O~ 02~ 
2 0 v  Or r Ov (1 - 2ar  cos 0) Or z 

1 (2r + 6 a r  2 cos O) O~ 2- 02~ 2f Oqb Oqb 
r 2 -~r + ' f  Or O0 + r O0 2a cos 0 --Or 

1 02(I ) ctg 0 0 ~  1 azd~ 
r 2 O02 r z O0 r2 sin20 Od~2 tz2~ = 0 (22) 

We deal with equation (22) outside the Rindler horizon. Because the region 
outside the Rindler horizon is r < rH, the generalized tortoise coordinate 
transformation should be rewritten as 

1 
r ,  = r + ~ ln[rN(v, 0) - r], v ,  = v - v0, 0 ,  = 0 - 00 (23) 
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so equation (22) can be written 

{2h4 - (1 - 2ar cos 0)[2K(r - rtt) + 1] - 2fr'n} 
• r2 [2K(r -  rH) + 1] - rff  

2K(r - ra)[2K(r - rH) + l ] r  2 

02cI) 02dp 
r 

{rZ[2K(r -  rn) + 1] 
• ~.dr---=" - 2 + 2r'n 

dr, dv, 

+ 1 + 2 K ( r -  r~ 

+ 2 f }  O21ffi~ 
dr, dO, 

~. S2r 2ta 1 - 2ar cos 0 
• [ 2 K ( r -  rH) 2 + 2Kr(r -- rn) + 2~(r - -  rH) 2 

2(r - 8ar2 cos 0) [ 1 ] 
- r2 1 + 2K(r-  rn) 

2frb 2frb r'a 2 + r ~ r -  04) + + 
2K(r - rH) 2 2 K r ( r -  rn) 2Kr2(r - rH) 2 

r'n cos 0 ] d~  
+ 2Kr2(r - rn) sin 0 ]  dr ,  

[ 1 dCI) 1 _ 2 f c t  0 0~  
- 1 + 2K(r  rt~) + - - " d v ,  r 

1 d2(I D 1 d2(I ) ] 

+ r_ Z dO___T, * + r 2 sin2~ dd~ ~ + p . 2 ~  = 0 (24) 

When r ---) rH(vo, %), v --4 Vo and 0 --~ 00, the equation can be reduced to 

02(I) d 2 ~  + B 02cI) G 0cI) = 0 ( 2 5 )  
ot Or---T, * + 2 Or, O v------~, Or, O0~, O r'---~ 

where 

Lim 
r~rn(vo,O o) 

v--.-)v 0 

0---)0 0 

{2~ o -  (1 --  2arcos 0 ) [ 2 K ( r  --  rH) + l ]  --  2fr'u}r2[2K(r-- rH) + 1] - -  r ~  
X 

- - 2 K ( r  --  rn)[2K(r-  rH) + 1 ] r  2 
(26) 
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0--.~0 0 

G = -7~ + 16a cos 0 - r~- ~ + r--~ ctg 0 (28) 
v-~v 0 
o-~o o 

Here, we have used equation (21). We select the adjustable parameter K as 

1 - -a  cos 0 -- r ~ / r  3] 

K 2rn a Cos 0 + rb2/2r~ {v-~vo (29) 
I 

0.-.->00 

Then we have ot = 1, and equation (25) can be reduced to 

02~ + 2 a2~  + B 02~ G Oqb 0 (30) 
Or 2 Or,  Ov,  Or,  d 0 ,  Or,  

Separating variables as 

= R ( r , ) O ( 0 , )  exp [ - i cov ,  + in~]  (31) 

we can verify that the radial wave solutions of  equation (30) are, respectively, 

t~ i  n --'~ exp [ - i cov , ]  (32) 

~bout = e x p [ - i t o v ,  + G r ,  + 2itor ,]  (33) 

d~i, is the ingoing wave, while dpo~t is the outgoing wave. Near  the Rindler 
horizon rn ,  ~bout can be rewritten as 

(~out = e x p [ - i t o v , ] ( r H -  r)GI2K(rH- r) i~lK (34) 

It is not analytical at the horizon. By  analytical continuation rotating + ~  
through the lower-half  complex r-plane, we can extend ~bout f rom the outside 
of  the Rindler horizon, r < rH, into its inside, where r > rn, 

(r  H -- r) ---> [rH -- r l e  i~r = (r  -- r t t )e  i~r 
dJou t ---> t~.ut = eitOv,+Gr.+2itOr.ei~rG/2Ke_~roV ~ (35) 

The relative scattering probability o f  the outgoing wave at the horizon is 
2 

= e 2 ~  (36) 
I]/out 

Then the spectrum of  the Hawking radiation is 

N~ = (e ~era~ +- 1) - I  (37) 
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where 

- - K  1 1 a c o s 0  + r~ lr  3 
T . . . . .  (38) 

2xrK~ 2"rrKB 2rH a cos 0 + r'n212r 3 

T is the Hawking-Unruh temperature, KB is Boltzmann's constant. 
We see that both the location and the temperature of  the Rindler horizons 

in the nonuniformly rectilinearly accelerating Rindler space-time depend not 
only on the time, but also on the polar angle. 

When m = 0 and a = const we obtain the Rindler horizon of  a uniformly 
rectilinearly accelerating observer, 

r~  2 
1 - 2arn cos 0 + 2fr'n + r--~n = 0 (39) 

It is a paraboloid of  revolution 

1 
rn - (40) 

a( l  + cos 0) 

Its Hawking temperature is a constant, K = --a,  

a 
T - (41) 

2axKn 

When m = 0 and a = a(v), the Rindler horizon will deviate from a paraboloid, 
and its Hawking temperature will depend on time v and the polar angle 0. 
When a = 0 but m :/: 0, from equation (3), we get the Vaidya black hole 
(Zhao and Dai, 1992; Balbinot, 1986) 

2m 
rn = 1 - 2fH (42) 

whose temperature depends on time v, but not on 0, 

1 - 2t ' /~ 
K = ~ (43) 

4m 

When m = m(v) :/: 0 and a = a(v) --k 0, there exist two event horizons, the 
Rindler horizon and the black hole horizon. From equations (3) and (20), we 
know that these horizons are still rotationally symmetric and their Hawk ing -  
Unruh temperatures depend on both v and 0. 

4. C O N T A C T  OF B L A C K  H O L E  AND R I N D L E R  H O R I Z O N S  

Now let us consider what will happen when the black hole touches its 
Rindler horizon. First, we look for the polar angles, where rH gets its maximum 
or minimum. With r~ = 0, equation (3) can be reduced to 
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(2a cos 00r~t - (1 - 2i't4)r14 + 2m = 0 (44) 

where 0~ is the polar angle where 04 gets its extreme value. The solutions 
o f  equation (44) are 

(1 - 2t~H) + [(1 - 2~n) 2 - 16ma cos Oi] 1/2 
(45) 

ra = 4a cos 01 

They belong to the black hole horizon and the Rindler horizon, respectively. 
When # t  = 0 and m a  < <  1, the above equation can be reduced to 

1 
rm ~ , rn2 ~ 2m (46) 

2a cos 01 

Apparently, r m  belongs to the black hole horizon. Comparing equation (40) 
with equation (46), we know that rnl belongs to the Rindler horizon, and 01 
= 0. Now, we show the extreme values o f  rH, 

(1 - 2~t41) + ~/(1 - 2~m) 2 - 16ma 
rm = 4a  

( 1  - -  2~a2) - ~/(1 -- 2~a2) 2 -- 16ma 
rH2 = 4a (47) 

When  the black hole touches its Rindler horizon, i.e., rat -- rtn, we have 

m m 
(1 - 2r = 16ma,  a r21 r22 (48) 

and 

1 - 2#n 4m 
r m  = r//2 . . . .  (49) 

4a 1 -- 2ea 

Equation (20) is reduced to 

K2 1 1 m/rZn2 - a 

T2 - 2" t r~  - 2 ' r r ~  2rt42 m / r ~  + a (50) 

and equation (38) is reduced to 

--KI 1 1 m / r Z l  -- a 

TI = 27r----KB -- 2 ~  2rm m/r]4, + a (51) 

We see that the temperature o f  the contact point (0 = 0, rn = 4m/(1 - 2~t~)) 
of  the two horizons will be reduced to zero (Zhao et  al.,  1994). This will 
violate the third law o f  thermodynamics.  
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On the other hand, at the opposite pole (south pole, 0 = 70 of the black 
hole, the Hawking temperature will increase rapidly, 

K2 1 1 m l r~  + a -  r ~ l r ~  
T2 . . . .  (52) 

2arKB 2xrKB 2rH ml r~  -- a + r f f / 2 r  3 

This shows that a thermal jet will appear as the tail of the accelerating 
black hole. 

5. CONCLUSION AND DISCUSSION 

The shape of the event horizon and the Rindler horizon of a nonuniformly 
rectilinearly accelerating Kinnersley black hole is rotationally symmetric and 
depends on both the time and the acceleration. Its Hawking temperature not 
only depends on the time, but also on the polar angle. When a Kinnersley 
black hole touches its Rindler horizon, the Hawking temperature at the contact 
point will be reduced to zero, but at the opposite pole of the black hole, the 
Hawking temperature will increase rapidly. A jet  will appear as the tail of  
the accelerating black hole. 

The "collision" between the black hole horizon and the Rindler horizon 
is very similar to the collision between two black holes. We infer that the 
Hawking temperature at the contact point of the two black holes will be 
reduced to zero, and that thermal jets will appear as tails of the two collision 
black holes. Every black hole will have a thermal jet tail. 
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